Smoothed ℓp-ℓ2 solvers for signal denoising
نویسندگان
چکیده
The basis pursuit denoising refers to the solution of an 12 minimization formulation which is well known as an effective method for signal denoising. In this paper we investigate an p2 formulation with p ∈ (0, 1) for denoising. Based on an analysis of the discontinuity of the global minimizer of the p2 problem with respect to regularization parameter, we propose two smoothed p2 solvers for orthogonal basis and overcomplete dictionary respectively. Experimental studies that evaluate the performance of the proposed solvers with various parameter settings are also presented.
منابع مشابه
A New Shearlet Framework for Image Denoising
Traditional noise removal methods like Non-Local Means create spurious boundaries inside regular zones. Visushrink removes too many coefficients and yields recovered images that are overly smoothed. In Bayesshrink method, sharp features are preserved. However, PSNR (Peak Signal-to-Noise Ratio) is considerably low. BLS-GSM generates some discontinuous information during the course of denoising a...
متن کاملA Noise-Robust Method with Smoothed ℓ1/ℓ2 Regularization for Sparse Moving-Source Mapping
The method described here performs blind deconvolution of the beamforming output in the frequency domain. To provide accurate blind deconvolution, sparsity priors are introduced with a smoothed `1/`2 regularization term. As the mean of the noise in the power spectrum domain depends on its variance in the time domain, the proposed method includes a variance estimation step, which allows more rob...
متن کاملNonconvex Weighted ℓp Minimization Based Group Sparse Representation Framework for Image Denoising
Nonlocal image representation or group sparsity has attracted considerable interest in various low-level vision tasks and has led to several state-of-the-art image denoising techniques, such as BM3D, LSSC. In the past, convex optimization with sparsity-promoting convex regularization was usually regarded as a standard scheme for estimating sparse signals in noise. However, using convex regulari...
متن کاملA COMPARATIVE ANALYSIS OF WAVELET-BASED FEMG SIGNAL DENOISING WITH THRESHOLD FUNCTIONS AND FACIAL EXPRESSION CLASSIFICATION USING SVM AND LSSVM
This work presents a technique for the analysis of Facial Electromyogram signal activities to classify five different facial expressions for Computer-Muscle Interfacing applications. Facial Electromyogram (FEMG) is a technique for recording the asynchronous activation of neuronal inside the face muscles with non-invasive electrodes. FEMG pattern recognition is a difficult task for the researche...
متن کاملAn Efficient Method for Knock Signal Denoising in Spark Ignition Engine
One of the factors that affects the efficiency and lifetime of spark ignited internal combustion engine is “knock”. Knock sensor is a commonly used to detect this phenomenon. However, noise, limits detection accuracy of this sensor. In this study, Empirical Mode Decomposition (EMD) method is introduced as a fully adaptive signal-based analysis. Then, based on weighting decomposition...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2012